Characterizing the Stability of Neuroimaging Analyses Through Perturbations in Experimental Design

Greg Kiar

2018-2021 NSERC Alexander Graham Bell Fellow, 2017 McGill University Healthy Brains for Healthy Lives Fellow, McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Ph.D. student McGill University, M.S.E. Johns Hopkins University, B.Eng Carleton University

HEALTHY BRAINS

FOR HEALTHY LIVES

CONP

PCNO

Outline

- Background & Overview
- Chapter 1: Scalable and Provenance Rich Pipeline Deployment (Clowdr)
- Chapter 2: Evaluating the Stability of Neuroimaging Pipelines & Analyses
- Chapter 3: Exploring Sources of Instability & Dependence Within Pipelines
- Conclusion

Background & Overview

Reproducibility in Neuroscience

- Noisy data and incomplete statistics can lead to spurious results (Bennett et al., 2011) (fMRI)
- Operating system differences have led to different results (Glatard et al., 2015) (sMRI)
- Dominant software libraries have inflated false-positive rates (Eklund et al., 2016) (fMRI)
- 1-voxel perturbations to inputs result in significantly different outputs (Lewis et al., 2016) (sMRI)
- Similar tools performing similar operations give different results (Bowring et al., 2018) (fMRI)

Currently missing in neuroimaging:

- Infrastructure for easily running and capturing "repro-analyses" at scale
 → I have created an infrastructure for this purpose
- A consistent method for evaluating the stability of results and tools
 → I will develop a metric for evaluating stability of neuroimaging analyses
- 3. Methods for identifying sources of instability within pipelines
 → I will use the metric above to explore the impact of individual processes on pipeline stability

(and, applications of "repro-analyses" to diffusion neuroimaging, which I will focus on)

Chapter 1: Scalable and Provenance Rich Pipeline Deployment (Clowdr)

1 year; complete

Clowdr is...

- Server-less microtool for running pipelines at scale on HPC and cloud systems
- Captures system-level provenance information (i.e. CPU/RAM usage) and Reprozip
- Provides an interactive web-report for exploring and sharing experiments.

Clowdr Experiment Explorer

Statistics				Invocations			
	FILTER ROWS						
	▲ Task	analysis_level	bids_dir	modality	output_dir	participant_label	
	0	participant	/data/hcp1200_min	func	/data/hcp1200_min	100206	
	1	participant	/data/hcp1200_min	func	/data/hcp1200_min	100307	
	2	participant	/data/hcp1200_min	func	/data/hcp1200_min	100408	
	3	participant	/data/hcp1200_min	func	/data/hcp1200_min	100610	
	4	participant	/data/hcp1200_min	func	/data/hcp1200_min	101006	
	5	participant	/data/hcp1200_min	func	/data/hcp1200_min	101107	

Experiment Timeline

Usage Stats

(Kiar, 2018; in review)

Analysis with Clowdr

- \$ # Installable on Python3...
 \$ pip install clowdr
 \$
- # Run locally/on clusters, the cloud, and share results
 clowdr local {tool} {invocation} {dataset} {output loc}
 clowdr cloud {tool} {invocation} {dataset} {output loc} {cloud} {keys}
 clowdr share {task loc} # {task loc} returned by any of the above

Chapter 2: Evaluating the Stability of Neuroimaging Pipelines & Analyses

1.5 years (total: 2.5 years)

In linear systems, this has been solved

Condition number of $\mathbf{Af} = \mathbf{x}$ can be evaluated as:

11

$$\kappa(\mathbf{A}) = ||A|| ||A^{-1}|| \ge \max_{\substack{x, f(x) \neq 0}} \frac{|\delta f(x)|/|f(x)|}{|\delta x|/|x|}$$

$$\delta f(x) = f(x + \delta x) - f(x)$$

11

maximum ratio of change in output, f, with respect to change in input, x.

(Davidson, 1981)

Applications in Diffusion Tensor Imaging

DWI tensor model:
$$S_i = S_0 e^{-b \mathbf{g}_i^T \cdot \mathbf{D} \cdot \mathbf{g}}$$

We can rearrange this with a couple clever substitutions...

Applications in Diffusion Tensor Imaging

DWI tensor model:
$$S_i = S_0 e^{-b \mathbf{g}_i^T \cdot \mathbf{D} \cdot \mathbf{g}}$$

We can rearrange this with a couple clever substitutions...

$$\mathbf{X} = (D_{xx}, D_{yy}, D_{zz}, D_{xy}, D_{xz}, D_{yz})^T$$

$$a_i = (g_{ix}^2, g_{iy}^2, g_{iz}^2, 2g_{ix}g_{iy}, 2g_{ix}g_{iz}, 2g_{iy}g_{iz})$$

$$a_i^T \mathbf{X} = ln(S_0/S_i)/b = ADC_i$$

 $ADC = (ADC_1, ADC_2, ..., ADC_N)^T$ $A = (a_1, a_2, ..., a_N)^T$

 $\mathbf{AX} = \mathbf{ADC}$... which is the same form as earlier

(Skare, 2000)

Stability of Tensor Estimation

Example comparison: noise effects

- \mathcal{A} : None, N-voxel, Ric., Gaus.
- \mathcal{D} : None
- $\mathcal{A}-\mathcal{D}$: Rician, N-voxel, Gaussian

How similar are connectomes with no noise to those with Rician-, N-voxel- and Gaussian-noise?

11

$\kappa(\mathbf{A}) \geq \max_{x, f(x) \neq 0} \frac{|\delta f(x)| / |f(x)|}{|\delta x| / |x|}$ Evaluating stability with respect to data

In this case, \mathcal{A} describes {datasets, subjects, noise, etc.}.

$$\hat{\kappa}(\mathcal{A}, \mathcal{D}) \ge \max_{x, x_d} \frac{\|f(x_d) - f(x)\|_R / \sigma_{f(x)}}{\|x_d - x\|_I / \sigma_x}$$

$$x_d \in \mathcal{D} \qquad \qquad x = x_d - \delta x \in \mathcal{A} - \mathcal{D}$$

Example: Evaluating dataset effects

 \mathcal{A} : D.set {1,2,3,4,5,6,7,8,9} \mathcal{D} : D.set {1,2,4} $\mathcal{A} - \mathcal{D}$: D.set {3,5,6,7,8,9}

How similar are connectomes from datasets {1,2,4} to those from datasets {3,5,6,7,8,9}?

11

Example: Evaluating tool effects

How similar are connectomes from FSL to those from MRtrix/Dipy?

11

Evaluating stability with respect to tool

In this case, \mathcal{A} describes {tool, operating system, etc.}.

$$\hat{\kappa}_t(\mathcal{A}, \mathcal{D}, \mathbf{x}) \ge \max_{x \in \mathbf{x}} \|f_d(x) - f(x)\|_R / \sigma_{f_d}$$

 $f \in \mathcal{A} - \mathcal{D}$ $f_d \in \mathcal{D}$

 $\hat{\kappa}(\mathcal{A}, \mathcal{D}) \ge \max_{x, x_d} \frac{\|f(x_d) - f(x)\|_R / \sigma_{f(x)}}{\|x_d - x\|_I / \sigma_r}$

Example: Evaluating OS effects

//

How similar are connectomes generated on CentOS 6 to those generated on CentOS 7 and Ubuntu?

//

Experiment: Estimating Stability

Purpose		Characterizing the instability and variability of analyses				
Outcomes Image: Metric for evaluating the stability of analyses with respect to dependent experimental variables Image: Metric for evaluating the stability of analyses with respect to dependent experimental variables Image: Metric for evaluating the stability introduced in Diffusion MRI experiments by dataset, noise, and tool selection						
Datasets		Modality Derivatives Tools				
Consortium of Reproducibility and Reliability			SL, MRtrix AFNI, FSL)*			
Experiment		Partial replication of [27] comparing conditioning to observe Determine a space-independent proxy for conditioning Process CoRR datasets using default Dipy, FSL, and MRtri Reprocess CoRR datasets with:	x pipelines			
Notes		*Based on collaboration with Dr. Camille Maumet, this we extended to cover functional MRI applications. This will le experience with fMRI evaluation, and will require the device theory similar to that presented in [27] on algorithms used in	vork may be everage her relopment of			

Chapter 3: Exploring Sources of Instability & Dependence Within Pipelines

1 year (total: 3.5 years)

Evaluating pipeline components

(Kiar, 2018)

	Purpose Explaining sources of instability and variability in tools					
Experiment:	Outcomes		Comparison of the stability of individual pipeline components overall tool stability.			
Sources of Instabi	lity	 overall tool stability Identification of sources of instability in pipelines Principled method for reconstructing pipelines with stable algorithms 				
	Datasets		Modality	Derivatives	Tools	
	Consortium of Reproducibility and Reliability		Diffusion MRI, Structural MRI	Structural Connectomes	Dipy, FSL, MRtrix	
	Experiment		Dissect structural pipelines into independently runnable component For each pipeline component, beginning with the first: Process CoRR datasets (or derivatives of previous step) 1-voxel perturbation Rician noise* Gaussian noise Calculate conditioning for each component across: Noise (fixed tool and dataset) Datasets (fixed tool) Tool (fixed datasets) Compare each algorithm for each setting			
	Notes			only be added to either raw MR images, since it is unexpected		

Conclusion

Expected collaborations

- Boutiques (Glatard)
- Enhancing data discovery and querying (Poline)

• Evaluating the stability of functional MRI software (Maumet)

- Mapping structural and functional connectivity (Suarez, Misic)
- Network evolution in development (Khundrakpam)
- Heritability of structural connectomes (Vogelstein, Priebe)

Stability Analysis

Tool Development

In summary

• Replicability can be difficult to achieve and assess in neuroimaging

• I have developed a tool increasing the ease with which scientists can perform repro-analyses

• I will develop a metric for evaluating the stability of results and identify their dependence on various variables such as tool, dataset, and noise

Acknowledgements

All code mentioned in this presentation is publicly available on GitHub.

Thanks!

Find me @ gkiar g_kiar greg.kiar@mcgill.ca

HEALTHY BRAINS

INEALTH NEURO

FOR HEALTHY LIVES

CONP

PCNO

Reproducibility or Replicability?

(Patil, 2016)

Replicability is a measurable problem

Fig. 1. Density plots of original and replication *P* values and effect sizes. (A) *P* values. (B) Effect sizes (correlation coefficients). Lowest quantiles for *P* values are not visible because they are clustered near zero.

Many tools make analyses accessible

- Standards for data and code interoperability increase re-usability ... but, require in depth knowledge of the data/code in question
- Software virtualization allows for portable code deployment ... but, different virtualizations are required for different systems
- Workflow engines enable constructing graphs between processing steps ... but, are tied to specific programming languages and constructs
- Capturing provenance records informs analysis and future experiments ... but, provenance tools and standards are typically complex and unintuitive
- Navigating through web platforms is user-friendly and intuitive
 - ... but, they are bulky and don't allow for the development or prototyping of tools and analyses

Clowdr ...

- is based on Boutiques and is BIDS-aware
- runs bare-metal and Docker/Singularity virtualized tools on HPC systems and clouds
- supports the batch deployment of pipelines constructed with workflow-engines
- captures system-level provenance information (i.e. CPU and RAM usage) and Reprozip
- supports both development- and production-level tools without an active server, and provides a web-report for exploring and sharing experiments.

1. Curate experiment

2. Develop experiment locally

3. Deploy at scale

4. Share & re-run experiment

(Kiar, 2018; in review)

(Kiar, 2018; in review)

Differences in ABIDE nulled with motion

N ~ 1100

Data including subjects with motion

N ~ 400

Data with quality control

Stability of processing and strictness of quality control can meaningfully change resulting scientific claims (Khundrakpam et al., 2017)

Expected Contributions to knowledge

• Accessible and portable tool for reproducible experiments

• Method for evaluating stability and tool-dependence in neuroimaging

• Method for identifying the sources of instability within pipelines

