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Gregory Kiar 

Thesis Overview 
With an explosion in data collection across nearly all scientific disciplines, we are entering the               
big-data era of scientific exploration. From the Sloan Digital Sky Survey ​[1] in cosmology, to the                
UK BioBank ​[2]​, Human Connectome Project ​[3]​, and the Consortium of Reproducibility and             
Reliability (CoRR) ​[4] in Neuroscience, initiatives are being launched to federate this            
data-tsunami, many with particular emphasis and commitment towards open data-sharing. 

As access to data has increased drastically, and the availability of diverse and customizable              
processing tools has grown similarly, it has become apparent that a lack of reproducibility in               
data analysis is becoming a plague in many disciplines of science ​[5]​. While on occasion this is                 
the result of p-hacking (i.e. the modification of analyses in search of significant results), it is                
likely due to much more innocent means such as software bugs ​[6]​, operating system              
selection ​[7]​, tool variability ​[8]–[10]​, or instability in the face of noise ​[10], [11]​. In the case of                 
growing datasets and increased automation, neuroimaging pipelines are often treated as black            
boxes used to fit alignments, segmentations, or models of the brain using data with variable               
signal to noise properties. The nature of these operations leaves them vulnerable to instability              
when presented with minor perturbations in either the data themselves or their processing             
implementations. Though the independent evaluation of atomic pipeline components may be           
feasible in some cases, as was done by Skare et al. ​[11]​, this ranges from impractical to                 
impossible in the case of multi-step pipelines. 

The objective of this thesis is to characterize instabilities observed in neuroimaging pipelines,             
identify their significance on downstream analyses and their potential role in a lack of              
reproducibility in neuroimaging, and attempt to leverage any observed instabilities for creating            
more stable estimators of brain structure or function. This body of work is thus split into the                 
following five components: 

1. Creation of computing infrastructures which enable the deployment, perturbation, and          
evaluation of software pipelines 

2. Comparison of various perturbation models for observing instabilities within structural          
connectome estimation pipelines 

3. Evaluation of the analytical impact of stabilities using domain-tested approaches 
4. Aggregation of unstable derivatives into more stable estimators 
5. Broad comparison of algorithms, tools, and both their raw and aggregated derivatives to             

provide recommendations for processing choices within the neuroimaging community 

The successful completion of my proposed project has the potential to simultaneously shed light              
on an important issue that has had an unquantified impact on results in neuroimaging, and               
mitigate this issue through the statistical evaluation and aggregation of unstable derivatives. The             
recommendations provided will allow scientists to make principled decisions on tool selection for             
their studies, and inform further work quantifying the effect of instabilities across other             
modalities of neuroimaging or disciplines of computational science. 
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Degree Progress to Date 
At our last committee meeting for my comprehensive examination at the beginning of             
degree-year 2, I had been nearing the completion of my first degree chapter. My involvement in                
the growing Boutiques and BIDS application standards, as well as development of tooling             
around them, has resulted in two publications ​[12], [13]​. Building upon these standards, I              
developed a tool, Clowdr, which enabled the scalable deployment and perturbation of pipelines             
expressed in these standards across HPC environments, which has since been published in             
Frontiers in Neuroinformatics ​[14]​. While papers surrounding these infrastructure efforts have           
been published, their development is ongoing and they continue to be extended to increase              
their useability both by tool developers and consumers. 

With infrastructure in place, I completed the following chapter which captures the exploration of              
pipeline stability and the leveraging of instabilities to generate stable derivatives. I have begun              
the evaluation of various perturbation methods on pipeline performance. In collaboration with            
Dr.s Pablo Oliviera and Eric Petit, I demonstrated the effect of- and identified potential use               
cases for both iterative (Monte Carlo Arithmetic ​[15]​, as implemented by MCALIB ​[16] and              
Verificarlo ​[17]​) and one-shot (1-voxel noise injection, demonstrated by Lewis et al. ​[10]​)             
perturbation methods. This work also begins to explore the aggregation of simulated derivatives,             
and shows basic properties of naive pooling strategies, such as taking the mean or given               
percentiles across all observations. I have both shared this work as a preprint ​[18] and had it                 
accepted for a talk at the Computational Reproducibility at Exascale workshop at the Super              
Computing conference in Fall 2019. This work is appended at the end of this document and will                 
be submitted to a special issue of the International Journal of High Performance Computing              
Applications which is dedicated to the study of computational reproducibility. 

Using Chapter 2 as a springboard, I have begun work on the following two chapters exploring                
the analytical impact of instability and more complex aggregation strategies, respectively. I will             
evaluate analytical impact of instabilities through both graph statistics (in collaboration with Dr.             
Bratislav Misic) and the use of measures to evaluate the biological feasibility of fibers (in               
collaboration with Dr. Ariel Rokem). To explore more complex methods of derivative            
aggregation, I secured an NSERC Michael Smith Forgein Study Supplement (MS-FSS) and            
Mitacs Globalink Research award to study at Inria (Bretagne-Atlantique) with Dr.s Camille            
Maumet and Elisa Fromont, where I explored the efficacy of 3D Deep Convolutional Neural              
Networks (3D CNNs) for minimizing the differences between statistical maps across           
observations. This work took place over the months of April – June 2019 and will be adapted for                  
structural connectome aggregation for my thesis. Alongside these efforts, I have collaborated            
with Dr. Gaël Varoquaux on integrating optimizations for image resampling in the Nilearn library              
to minimize the number of floating point operations which are performed in the (common)              
special case when no rescaling of the field of view is needed. I plan to continue collaboration                 
with Dr. Varoquaux on the development of simulation-aware aggregation methods, and           
generate an estimate of the reliability for pooled results. 
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Proposed Chapters 
As stated above, the proposed thesis will consist of work spread across five chapters, spanning 
the creation of infrastructures for perturbation analysis, an evaluation of the impact of numerical 
instabilities within neuroimaging, and recommendations for how researchers can navigate these 
issues. 

Chapter 1: Facilitating FAIR Tool Creation, Consumption, and Deployment 
Building upon the Boutiques ​[12] descriptive command-line framework for describing and           
evaluating tools, I built Clowdr ​[14] to manage, distribute, and log the execution of              
Boutiques-described tasks across cloud and cluster environments. This tool facilitates the           
perturbation and permutation of pipeline executions at large scales, and enables the study of              
stability that follows in this thesis. In addition to the development of Clowdr, the Boutiques               
Python Package facilitates the publication and access of tool descriptions, execution           
parameters, and experimental outcomes, ensuring that all performed analyses are FAIR ​[19]​. 

Chapter 2: Comparing Methods for Identifying Instabilities in Pipelines 
Prior to evaluating the impact of instabilities or whether aggregation is needed, it was necessary               
to first evaluate methods for observing instabilities within pipelines. Two key types of             
perturbations were tested: one-shot and iterative. The one-shot perturbation method refers to a             
disturbance occurring at one stage of processing, such as the 1-voxel noise injection method              
used by Lewis et al. in ​[10]​. Iterative perturbations refer to much smaller disturbances being               
introduced throughout tool execution and are here based on Monte Carlo Arithmetic (MCA) ​[15]​.              
Through tool instrumentation with MCA using mcalib ​[16] and Verificarlo ​[17]​, each floating point              
operation may be instrumented such that the operation is simulated with a random zero-biased              
bit-flip at the target precision (in our case, the least significant bit). MCA allows for the detection                 
of instabilities which emerge due to the rounding errors and numerical imprecision that are              
present in all floating point operations. My work evaluating these perturbation methods for a              
deterministic tractography pipeline in Dipy has been accepted for a talk at the Computational              
Reproducibility at Exascale workshop at Super Computing in November 2019, and the pre-print             
[18]​ will be submitted to the International Journal of High Performance Computing Applications. 

Chapter 3: Evaluating Analytical Impact of Instabilities 
Given the presence of instabilities in the deterministic pipeline tested, we can extend this              
evaluation to look at the impact of these differences in a typical analytical or biological context.                
Through collaboration with Dr.s Bratislav Misic and Ariel Rokem, I will evaluate simulated             
connectomes and graphs, respectively, on these axes. Additionally, I will evaluate more            
complex pipelines in the Dipy ecosystem, such as those using higher dimensional tensor             
models or probabilistic tractography. This will allow us to identify which algorithms (as             
implemented with approximately equivalent quality) are inherently more stable and allow for the             
selection or improvement of methods within this open source tool. 
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Chapter 4: Improving Pipeline Stability Through Statistical Aggregation 
Following the evaluation of the analytical impact of unstable derivatives, I will explore methods              
for aggregating these derivatives. I will explore the distributions of observed simulated graphs             
and identify the distribution of values being observed. In addition to the naive application of               
mean and median values, I will identify the expected value of the observed distribution and               
perform aggregation accordingly. The accuracy of aggregates will be evaluated using the            
methods shown in Chapter 3. The variability of aggregates will also be evaluated, allowing us to                
make informed decisions regarding the number of simulations necessary to obtain a stable             
aggregate. In addition to the aggregation methods above, the Convolutional Neural Network            
Autoencoder developed with Dr.s Camille Maumet and Elisa Fromont for reconstruction of            
functional statistical maps will be modified for structural connectomes, allowing for the            
evaluation of aggregations spanning a wide range of complexity. 

Chapter 5: Improving the Stability of Pipelines Through Instability 
Combining the work shown in all preceding chapters, I will demonstrate the application of these               
methods for the comparison and ranking of tools, algorithms, and tool-dataset combinations.            
Pipelines from MRtrix and FSL will also be evaluated, and multiple datasets will be used for the                 
comparison, highlighting the importance of tool selection in the context of one’s dataset. It will               
provide recommendations for researchers in terms of how they may be able to perform their               
analyses with these libraries with respect to obtaining the most stable estimators of structural              
connectivity, and thus, the most trustworthy analytical findings.  
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First Author Journal Publication Summary 

# Paper Name Working Title ​(​Current Status ​) 
Brief Description 

1 Clowdr A Serverless Tool for Platform Agnostic Computational Experiment 
Management ​(​Published: Frontiers in Neuroinformatics ​[14]​) 

Introduces Clowdr, a tool for launching Boutiques-described 
tools on HPC environments, iterating over parameters and 
perturbations, and recording rich provenance logs. 

2 Perturbation 
Methods 

Comparing Perturbation Models for Evaluating Stability of 
Neuroimaging Pipelines ​(​Talk: CRE19; Preprint ​[18]​; Target: 
International Journal of High Performance Computing Applications​) 

Evaluates the impact of MCA and 1-voxel noise on a diffusion 
connectome estimation workflow. Identifies potential use 
cases for each noise mode, and introduces the concept of 
aggregating unstable derivatives. 

3 Analytical Impact Identifying the Analytical Impact of Numerical Instabilities in 
Neuroimaging Pipelines ​(​Target: Nature Communications​) 

Extends the Perturbation Methods paper above to a) evaluate 
multiple algorithms within Dipy, b) include evaluation of the 
analytic impact of instability by proxy of various commonly 
used network statistics and test-retest reliability, and c) 
attempts normalization as a method for difference mitigation. 

4 Aggregation Estimating Expected Value From Empirical Derivative Distributions 
Across Simulated Pipeline Executions ​(​Target: IEEE Transactions in 
Medical Imaging ​) 

Explores the structure of deviations observed in the Analytical 
Impact paper, and fits a distribution to them so that the 
expected value of the derivatives may be estimated. Also 
continues 3D CNN work for structural connectomes. 

5 Tool Comparison Uncovering the Relative Impact of Numerical Instabilities Across 
Popular Neuroimaging Libraries ​(​Target: eLife ​) 

Combines the Analytical Impact and Aggregation papers with 
the addition of a) more pipelines across other libraries, such 
as FSL and MRtrix, b) provides a score for each pipeline 
tested, and c) makes recommendations for researchers to 
minimize the vulnerabilities of their analyses to instabilities. 
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External Collaborators 
Clowdr: N/A 
Perturbation Methods: Dr. Pablo Oliviera, Dr. Eric Petit 
Analytical Impact: Dr. Bratislav Misic, Dr. Ariel Rokem 
Aggregation: Dr. Camille Maumet, Dr. Elisa Fromont, Dr. Gaël Varoquaux 
Tool Comparison: All of the above 

Timeline 

Degree years Milestone 

0 – 0.5 Ph.D: Initial Meeting 
Ch. 1: Clowdr started 

0.5 – 1 Ch. 1: Boutiques published 
Ch. 1: Clowdr submitted 

1 – 1.5 Ph.D: Comprehensive Exam 
Ch. 1: Clowdr published 
Ch. 2: Perturbation Methods started 

1.5 – 2 Ch. 2: Perturbation Methods awarded talk and submitted 
Ch. 3: Analytical Impact started 
Ch. 4: Aggregation started 

current date all following milestones and dates are "planned" 

2 – 2.5 Ch. 2: Perturbation Methods published 
Ch. 3: Analytical Impact submitted 
Ch. 4: Aggregation submitted 
Ch. 5: Tool Comparison started 

2.5 – 3 Ch. 3: Analytical Impact published 
Ch. 4: Aggregation published 
Ch. 5: Tool Comparison submitted 
Ph.D: Thesis Pre-Submission 

3.5 – 4 Ph.D: Write Thesis 
Ch. 5: Tool Comparison published 
Ph.D: Defend Thesis 
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Abstract—With an increase in awareness regarding a troubling
lack of reproducibility in analytical software tools, the degree
of validity in scientific derivatives and their downstream re-
sults has become unclear. The nature of reproducibility issues
may vary across domains, tools, datasets, and computational
infrastructures, but numerical instabilities are thought to be
a core contributor. In neuroimaging, unexpected deviations
have been observed when varying operating systems, software
implementations, or adding negligible quantities of noise. In
the field of numerical analysis these issues have recently been
explored through Monte Carlo Arithmetic, a method involving
the instrumentation of floating point operations with probabilistic
noise injections at a target precision. Exploring multiple simu-
lations in this context allow the characterization of the result
space for a given tool or operation. In this paper we compare
various perturbation models to introduce instabilities within a
typical neuroimaging pipeline, including i) near-epsilon noise,
ii) Monte Carlo Arithmetic, and iii) operating system variation,
to identify the significance and quality of their impact on the
resulting derivatives. We demonstrate that even low-order models
in neuroimaging such as the structural connectome estimation
pipeline evaluated here are sensitive to numerical instabilities,
suggesting that stability is a relevant axis upon which tools are
compared, alongside more traditional criteria such as biological
feasibility, computational efficiency, or, when possible, accuracy.
Heterogeneity was observed across participants which clearly
illustrates a strong interaction between the tool and dataset
being processed, requiring that the stability of a given tool be
evaluated with respect to a given cohort. We identify use cases
for each perturbation method tested, including quality assurance,
pipeline error detection, and local sensitivity analysis, and make
recommendations for the evaluation of stability in a practical and
analytically-focused setting. Identifying how these relationships
and recommendations scale to higher-order computational tools,
distinct datasets, and their implication on biological feasibility
remain exciting avenues for future work.

Index Terms—neuroimaging, diffusion MRI, stability, Monte
Carlo Arithmetic

I. INTRODUCTION

A lack of computational reproducibility [1] has become in-
creasingly apparent in the last several years, calling into ques-
tion the validity of scientific findings affected by published
tools. Reproducibility issues may have numerous sources
of error, including undocumented system or parametrization
differences and the underlying numerical stability of algo-
rithms and implementations employed. While containerization

This work was funded by the Natural Sciences and Engineering Research
Council of Canada (CGSD3 - 519497 - 2018).

can mitigate the extent of machine-introduced variability,
understanding the effect that these sources of error have on
the encapsulated numerical algorithms remains difficult to
explore. In simple cases where algorithms are differentiable
or invertible, it is possible to obtain closed-form solutions for
their stability. However, as software pipelines grow, containing
multiple complex steps, using non-linear optimizations and
non-differentiable functions, the stability of these algorithms
must be explored empirically.

As neuroscience has evolved into an increasingly computa-
tional field, it has suffered from the same questions of numer-
ical reproducibility as many other domains [2]. In particular,
neuroimaging often attempts to fit alignments, segmentations,
or models of the brain using few samples with variable signal
to noise properties. The nature of these operations leaves
them potentially vulnerable to instability when presented with
minor perturbations in either the data themselves or their
processing implementations. The independent evaluation of
atomic pipeline components may be feasible in some cases, as
was done by Skare et al. in [3]. Here, the authors computed
the theoretical conditioning of various tensor models used in
diffusion modeling, and compared these values to the observed
variances in tensor features when fit on simulated data. While
approaches like the above provide valuable insights to algo-
rithms and their implementations independently, the impact of
these stepwise instabilities within composite pipelines remains
unknown. Even if one were able to evaluate each step within
a pipeline, identifying the impact these instabilities may have
on a result when composed together, both structurally and
analytically, remains practically difficult to evaluate.

Various forms of instability have been observed in structural
and functional magnetic resonance (MR) imaging, includ-
ing across operating system versions [4], minor noise injec-
tions [5], as well as dataset or implementation of theoretically
equivalent algorithms [6], [7]. These approaches may have
practical applications in decision making, such as deciding
which tool/implementation should be used for an experiment.
However, they are relatively far removed from the underlying
numerical instabilities being observed. Recent advances in
numerical analysis allow for the replacement of floating point
operations with Monte Carlo Arithmetic simulations [8] which
inject a random zero-bias rounding error to operations for a
target floating-point precision [8], [9]. This method can be
used for evaluating the numerical stability of tools by wrapping



existing analyses [9] and providing a foothold for scientists
wishing to explore the space of their pipeline’s compound
instabilities [10].

In this paper we explore the effect of various perturbations
on a typical diffusion MR image processing pipeline through
the use of i) near-epsilon noise injections, ii) Monte Carlo
Arithmetic, and iii) varying operating systems to identify the
quality and severity of their impact on derived data. This
evaluation will inform future work exploring the stability
of these pipelines and downstream analyses dependent upon
them. The processing pipeline selected for exploration is
DiPy [11], popular tool that generates structural connectivity
maps (connectomes) for each participant. The pipeline accepts
de-noised and co-registered images as inputs, and then per-
forms two key processing steps: tensor fitting and tractography.
We demonstrate the relative impact that each of the tested
perturbation methods has on the resulting connectomes and
explore the nature of where these differences emerge.

II. METHODS

All processing described below was run using servers
provided by Compute Canada. Software pipelines were en-
capsulated and run using Singularity [12] version 2.6.1.
Tasks were submitted, monitored, and provenance captured
using Clowdr [13] version 0.1.2-1. All code for perform-
ing the experiments and creating associated figures are
available on GitHub at https://github.com/gkiar/stability and
https://github.com/gkiar/stability-mca, respectively.

A. Dataset and pre-processing

The dataset used for processing is a 10-session subset of
the Nathan Kline Institute Rockland Sample dataset (NKI-
RS) [14]. This dataset contains high fidelity structural, func-
tional, and diffusion MR data and is openly available for
research consumption. The 10 sessions used were chosen
by randomly selecting 10 participants and selecting their
alphabetically-first session of data. This data was preprocessed
prior to the modelling evaluated here using a standard de-
noising and image alignment pipeline [15] built upon the
FSL toolbox [16]. The steps in this pipeline include eddy
current correction, brain extraction, tissue segmentation, and
image registration. The boundary between white and gray
matter was obtained by computing the difference between a
dilated version of the white matter mask and the original. Data
volumes at this stage of processing are four-dimensional and
variable in spatial extent (first three dimensions) with a fixed
number of diffusion directions (fourth dimension), totalling
approximately 1003 ⇥ 137 voxels in each case.

B. Modeling

After pre-processing the raw diffusion data using FSL,
structural connectomes were generated for an 83-region corti-
cal and sub-cortical parcellation [17] using Dipy [11]. A six-
component tensor model was fit to the diffusion data residing
within white matter. Seeds were generated in a 2 ⇥ 2 ⇥ 2

0

1000
Edge Weight

Fig. 1. Example connectome. Each row and column corresponds to a
region within the brain, and the intersection a connection between them. If no
connection is found between regions, the edge strength is zero. If a streamline
is found to connect two regions, the weight is incremented by 1. The resulting
weights are the sum of all observed connections for every streamline traced
within a brain image.

arrangement for each voxel within the boundary mask, result-
ing in 8 seeds per boundary voxel. Deterministic tracing was
then performed using a half-voxel step size, and streamlines
shorter than 3-points in length were discarded as spurious.
Once streamlines were generated they were traced through the
parcellation. Edges were added to the graph corresponding
to the end-points of each fiber, and were weighted by the
streamline count. This pipeline was implemented in Python,
including a few components in Cython, and relies on the
Numpy library for a large proportion of operations. Each
resulting network is a square connectivity matrix of 83 ⇥ 83
edges, as shown in Fig. 1. This pipeline was chosen as it is
both common and simple relative to many alternatives.

C. Stability Evaluation

Near-epsilon and Monte Carlo perturbation modes were
tested 100x per image. Noise was represented by percent
deviation of the Frobenius norm of a resulting connectome
from the corresponding reference (no noise injection). A
deviation of 50% indicates that the norm of the difference
between the noisy and reference networks is 50% the size of
the norm of the reference graph. This is formalized below in
Eq. (1):

%Dev(A,B) =

vuut
mX

i=1

nX

j=1

|aij � bij |2/

vuut
mX

i=1

nX

j=1

|aij |2, (1)

where A is the reference graph, B is the perturbed graph,
and ⇤ij is an element therein at row i and column j.
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The perturbation methods evaluated, presented below, are
summarized in Table I.

D. Subject-Level Variation

Comparison between subjects will be used as a reference
error. If the differences observed by other methods are similar
in magnitude to the subject-level difference, then the validity
of the processed networks for use in downstream phenotypic
analysis becomes questionable as subjects cannot be reliably
distinguished from one another. This error is computed as
the pairwise distance between all 10 subjects included in this
cohort.

E. Near-Epsilon Noise

The goal of near-epsilon noise was to inject data pertur-
bations sufficiently small that the resulting images would be
indistinguishable from the original. This is meant to test the
lower-bound of noise sensitivity for processing pipelines. The
type of near-epsilon noise used here will be referred to as 1-
voxel noise and is similar to the method employed in [5]. In
our case, the intensity of a single voxel in the defined range
will be scaled based on a scaling factor. The voxels modified
in this case were randomly generated within the mask of brain
regions being modeled by the pipeline.

The two modes of 1-voxel noise injection tested here
were: a) a single voxel per entire image of size (X,Y, Z,D)
(approximately 1003⇥137 for all images), or b) a single voxel
per 3D volume of size (X,Y, Z) (approximately 1003 for all
images), and are referred to as “single” and “independent”
modes, respectively. The intensity of the scaling was consistent
as in both cases the original intensity was doubled.

F. Monte Carlo Arithmetic

Verificarlo [10] is an extension of the LLVM compiler
which automatically instruments floating point operations at
build-time for software written in C, C++, and Fortran. Once
compiled with Verificarlo, the Monte Carlo emulation method
and target precision can be set as environment variables.
For all simulations a rounding error on the least significant
floating point bit in the mantissa (bit 53) was introduced.
The simulations were computed using the custom QUAD
backend which is optimized to reduce computation time
over the traditional mcalib MPFR backend leveraging GNUs
multiple precision library [9]. Noise through Verificarlo can
be injected as “Precision Bounded”, simulating floating point
cancellations, “Random Rounding”, simulating only rounding
errors on computation, and “MCA”, which includes both of
these modes. A particularity of the Random Rounding mode
is that it only injects rounding noise on inexact floating-point
operations (i.e. operations that have a rounding error in IEEE-
754 at the target precision). Therefore, RR mode preserves the
original exact operations, it is a more conservative noise sim-
ulation. We used both the RR and MCA modes of simulation.

Verificarlo was used to instrument tools in two modes we
will refer to as “Python” and “Full Stack”. In the Python
instrumentation, the core Python libraries were recompiled

with Verificarlo as well as any subsequently installed Cython
libraries. In the Full Stack instrumentation, BLAS and LA-
PACK were also recompiled, meaning that Numpy, a dominant
Python library for linear algebra, was also instrumented. The
Full Stack implementation did not run successfully using the
MCA mode. We suspect that some libraries require exact
floating-point operations or are sensitive to cancellation errors,
so only the Random Rounding (RR) mode was able to be
evaluated for the Full Stack. These images are available on
DockerHub at gkiar/fuzzy-python.

G. Operating System Variation
Operating system noise was evaluated across Alpine Linux

3.7.1 and Ubuntu 16.04. Alpine is a lightweight distribution
which comes with minimal packages or libraries, and Ubuntu
is a popular Linux distribution with a large user and develop-
ment community. Alpine was chosen as its lightweight nature
makes it an efficient choice for the packaging and distribution
of libraries in scientific computing, reducing the overhead of
shipping code towards data sources. Ubuntu was chosen due
to is high adoption and community support by major libraries.
While Alpine comes with a minimal set of libraries, a core
difference between these systems as noted by DistroWatch
(https://distrowatch.com/) is their dependence on a different
version of the Linux kernel.

Ubuntu was used as the base operating system for all
simulations other than this comparison.

H. Aggregation of Simulated Graphs
To structurally evaluate each simulation setting, connec-

tomes were aggregated within setting and subject combina-
tions. Several aggregation methods were explored to preserve
various sensitivity and stability properties across the aggre-
gated graphs. In each case, the operations are performed
edge-wise, so the aggregated graph is not guaranteed to be
single graph in the set of perturbed graphs. The aggregation
operations are the edge-wise mean and the 0th (min), 10th,
50th (median), 90th, and 100th (max) %-iles. The mean
aggregate will include a non-zero weight for every edge
which appears in at least one simulation, and the 0th and
100th %-iles will include the lowest and highest observed
weight for every edge, respectively. The 90th, 50th, and 10th

%-iles increasingly aggressively filter edges based on their

TABLE I
DESCRIPTION OF PERTURBATION MODES

Permutation Description
1-voxel Intensity value doubled for either Single (one voxel in

entire 4D volume) or Independent (one voxel per 3D sub-
volume) voxels.

MCA Simulation of all floating point operations in Python
(Python and Cython-compiled libraries).

RR Simulation of all rounding operations in Python or the
Full Stack (BLAS, and LAPACK, Python and Cython-
compiled libraries).

X-OS One of Ubuntu 16.04 or Alpine 3.7.1.
X-Subject Pairwise comparison of sessions based on Subject ID.
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Fig. 2. Comparison of perturbation modes. As evaluated by the percent deviation from reference in the Frobenius Norm of a resulting connectome, each
of the 10 processed subjects were re-processed 100 times for each perturbation method. We see that the MCA and RR (Python) methods resulted in distinct
modes for the outputs in all cases reaching extreme deviations equivalent to cross-subject variation. The RR (Full Stack) method shows high variability across
subjects, and only reaching cross-subject variation in the case of 2 subjects. The 1-voxel methods result in considerably less deviation from reference, and
are more consistent across subjects than the RR (Full Stack) method.

prominence across simulations. The combination of percentile
aggregates also enable isolation of the most spurious edges,
such as by taking the difference of maximum and minimum
aggregates. A volatile aggregate was created to this effect
which consists of edges which are found in the maximum
aggregate but not the minimum aggregate. Note that in this
case, the weight for these edges is not implied and can be
defined as an alternative function of the graph collection, such
as mean, but as the weight does not appear when comparing
binary edges, no recommendation for this weighting is made
here.

III. RESULTS

All perturbation modes were applied to either the input data
or post-processing pipeline described in the Section II-B, and
were evaluated according to Eq. (1).

A. Perturbation Induced Differences
Fig. 2 shows the percentage deviation for each simulation

mode on 10 subjects. Introduced perturbations show highly-
variable changes in resulting connectomes across both the
perturbation model and subject, ranging from no change to
deviations equivalent to difference typically observed across

subjects. For the 10 subjects tested, we see that the Python-
instrumented MCA and RR pipelines resulted in the largest
deviation from the reference connectome. In these cases we
also see that the results are modal, where each subject has
discrete states that may be settled in, some of which result in
deviations comparable to subject-level noise. This modality is
likely due to minor differences introduced at crucial branch-
points which then cascaded throughout the pipeline. This
hypothesis is supported by observing that the Full Stack
implementation with RR perturbations shows a continuous
distribution of differences that are highly variable in intensity,
ranging from no deviation to subject-level in some cases for
some subjects.

The 1-voxel independent mode unsurprisingly produces
larger changes than the 1-voxel single mode. These changes
are larger than or comparable to operating system variability,
respectively, resulting in small deviations from the refer-
ence, and are relatively minor in comparison to the extremes
observed with Monte Carlo Arithmetic. Operating system
deviations are very low or even zero in some cases. In all
perturbation settings we can see that there is large variability
both across simulations on the same data and across subjects.
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Fig. 3. Structure of Deviations. Shown in increasing deviation from left–
right and top–bottom, with the reference in the centre, are the difference
connectomes observed for the RR (Full Stack) perturbations of subject
A00035940. In this case, the left hemisphere (bottom-right portion of the
graph) begins to degrade quickly, eventually reaching an almost complete
loss in signal.

B. Progression of Deviations in a Continuous Setting

In the case of subject A00035940, the Full Stack RR pertur-
bations led to a continuous distribution of outputs, ranging in
difference from none to subject-level from the reference. Fig. 3
explores the progression of these deviations by visualizing
the difference-connectome for samples along various points
of this distribution. In the center we show the reference
connectome, and surrounding it the difference graph for a
simulated sample with labelled %Dev from this reference. In
this case, we can see a progression of structurally consistent
deviations. In particular, edges corresponding to regions in the
left hemisphere become increasingly distorted (bottom-right
portion of the connectome), whereas the within-hemisphere
connectivity for the right hemisphere (top-left portion) remains
largely intact in all cases except the extreme difference case.
We notice in all cases that the connectivity between regions
is decreasing until the edges disappear entirely. While this
behaviour is not consistent across all subjects, this observation
suggests a peculiarity in the quality of data in this region for
the subject in question. This could be due to artifacts caused
by motion or other factors, ultimately reducing the stability of
modeling connectivity in this region.

C. Structural Properties of Introduced Perturbation

While the case investigated above notably showed a sig-
nificant degradation of regional signal quality for Full Stack
RR noise in a single subject, Fig. 4 explores the relative
change in connectivity from the reference for each perturbation
mode and subject. Edges in the presented graphs are weighted
by their standard deviation across all simulations for that

participant, and coloured as positive or negative deviations
based on whether the mean weight for all simulations was
greater or lower than the reference weight, respectively. All
edges with a standard deviation of 0 across all simulations
were blacked out for clarity.

For the Python instrumented MCA and RR implementa-
tions, edge weight was generally inflated non-specifically for
existing edges in the reference connectome for all subjects.
The Full Stack RR implementation shows significant vari-
ability across subjects, where the number of affected edges
ranges from none to all. In each case where there exists some
deviation, intensities appear to be spatially linked, suggesting
the differences may be due to variable quality in the underlying
data. In this case, Monte Carlo Arithmetic may have served
to shed light on poor signal-to-noise properties present within
regions of the images being modelled.

For 1-voxel noise, the differences introduced across inde-
pendent injections impacted a larger portion of edges than
single injections, unsurprisingly. By design (i.e. injection at
random locations for each simulation), the deviations appear
non-specifically spatially distributed. However, 1-voxel noise
could be modified to spatially constrain the location for noise
injection regionally, allowing the evaluation of modelling for
particular sub-structures within the images.

D. Aggregation Across Simulations
For each simulation method there existed a graph nearly

identical to the reference, but the variability introduced by
these simulation was highly variable both in terms the method
of perturbation used and the dataset being processed. The
aggregation of the simulated graphs into a consensus graph
allows features of this variation to be encoded implicitly in
connectomes which may be used for downstream analyses.
Fig. 5 shows the relative percentage of added and missing
edges for each setting across all subjects using a variety of
such aggregation methods.

By aggregating the simulated connectomes in a variety of
methods, the resulting edges would be a product of applying
some filter to the set of observed edges, and succinctly repre-
sented in a single graph. While minor deviations in one edge
may reduce the strength of connectivity between two strongly
linked regions, the addition of a connection between two
regions which were previously unconnected may be significant
in one aggregation method but ignored in another. In the case
of the above example, despite the strength of connectivity
remaining low between the newly connected nodes many
graph theoretic measures rely on binarized graphs and may
be considerably affected, such as the degree.

We notice that the 1-voxel independent (i.e. single voxel per
3D volume) method shows the most variability across each
aggregation method. Where all of the MCA-derived methods
perturb the pipeline non-locally, both epsilon-level methods
add local noise at arbitrary locations. This distinction seems
to manifest in more widely added or knocked-out edges for the
1-voxel cases, as the location of noise may have considerable
impact on a multitude of nearby fibers, where MCA methods
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Fig. 4. Perturbation introduced structural differences. The variance of each edge is shown relative to the reference edge strength, and coloured either red
or blue based on the mean perturbed weight was higher or lower than that of the reference, respectively. Edges which experienced no variation were coloured
as green to be distinct from all edges which experience any variation.

have a zero-bias noise globally, meaning all deviations from
the reference are spurious and due to numerical error rather
than the introduction of a systemic change that sheds light on
an underlying cascading instability.

Unsurprisingly, the only aggregation method which shows
considerable amount of both new and missing edges is the
volatile technique, which takes edges that exist in the binary
difference of 100th and 0th percentile graphs, eliminating all
extremely stable edges from the graph (i.e. those which exist
for the reference and all simulations). While the mean sparsity
of the reference graphs is 0.30, meaning 30% of possible
connections have non-zero weight on average, the sparsity of
the volatile aggregates ranges from 0.005 to 0.130, or, the
aggregates contain between 2.5% and 43.0% the number of
edges as the reference graphs.

E. Comparison of Simulation Performance

While the application of each perturbation model tested
sheds light on different properties of pipeline stability, the
resource consumption of these methods has significant bearing
when processing data in the context of a real experiment
often consisting of dozens to hundreds of subjects worth of
data. Fig. 6 shows the Time-on-CPU for a single simulation
of each method tested, relative to the reference task with
no instrumentation. For Monte Carlo Arithmetic instrumented
executions, we expect to see a considerable increase in com-
putation time as additional overhead is added to each floating

point operation. In the case of 1-voxel noise it is expected
to see a minor increase in computation time as the perturbed
data volumes were generated at runtime, reducing the data
redundancy on disk.

The Python MCA and RR modes show a slight increase in
computation time to the reference task, whereas the Full Stack
version approaches a nearly 7⇥ slowdown, on average. This
discrepancy further supports the hypothesis stated above that
floating point logic implemented directly in Python, without
the use of Numpy or external libraries, account for a minor
portion of the total floating point operations. In the case
of 1-voxel perturbations, we see a slowdown approximately
equivalent to that of the Python instrumentation, not exceeding
a 2⇥ increase.

IV. DISCUSSION

We have demonstrated through the application of multiple
perturbation methods how noise can be effectively injected into
neuroimaging pipelines enabling the exploration and evalua-
tion of the stability of resulting derivatives. These methods
operate by either perturbing the datasets or tools used in
processing, resulting in a range of structurally distinct noise
profiles and distributions which may each provide value when
exploring the stability of analyses. While 1-voxel noise is
injected directly into the datasets prior to analysis, MCA and
RR methods iteratively add significantly smaller amounts of
noise to each operation performed.
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Fig. 5. Gain and loss of edges in aggregation of simulations. The relative gain and loss of edges is shown for each aggregation method and perturbation
method in terms of binary edge count. The volatile aggregation is the difference between percentile (100) and percentile (0) aggregates, and is contains all
edges which do not appear in every graph. The volatile set of edges for each of MCA (Python), RR(Python), RR (Full Stack), 1-voxel (independent), and
1-voxel (single) contain 2.5%, 2.5%, 18.5%, 43.0%, and 1.7% of the number of edges found in the reference, respectively. In the worst case, 1-voxel
(independent), this means that the existence of nearly half the edges in the graph fail to have consensus across the simulations.

In the case of partial (Python) instrumentation with MCA
and RR, distinct and considerably distinct modes emerged
in all tested subjects. We believe it is likely that software
branching played a role leading to this unexpected result. As
the majority of numerical analysis in Python is traditionally
performed using the Numpy library, and therefore BLAS and
LAPACK, it is possible that the error introduced by Python
was allowed to cascade throughout the pipeline without correc-
tion, growing to the often subject-level differences observed.
These modes would then be the result of a small number
of instrumented numerically-sensitive operations, leading to a
bounded set of possible outcomes of an otherwise determinis-
tic process. It is possible that these distinct modes could serve
as upper-bounds for the deviation due to instabilities within a
pipeline, and is an area for further exploration. Future work
will also more closely instrument libraries with functionality
that will enable the identification of crucial branch points,
as this functionality is already present within Verificarlo. The
identified crucial branch points could be leveraged for the re-
engineering of pipelines with more stable behaviour.

An exciting application of MCA and RR (Python) analyses
in cases where pipeline modification is not feasible (i.e. closed
source code) is the generation of synthetic datasets. Using
each mode or an aggregated collection of modes as samples in
the MCA-boosted dataset, this could potentially increase the
statistical power of analyses for datasets which may suffer
from small samples, or be used to increase the robustness
of derivatives by bagging the results using an appropriate
averaging technique for the simulated derivatives.

While the Python instrumentation with MCA and RR re-
sulted in derivative modes, the Full Stack instrumentation with
RR produced a continuous distribution of derivatives which
were often less distinct from the reference results. Extending
the hypothesis posited above, this continuous set of results
may be due to a law of large numbers effect emerging when

performing a considerable number of small perturbations,
leading to a normalized error distribution and effectively a
self-correction of deviations. This will be addressed in future
work in which tools are instrumented to progressively compare
derivatives and their deviation from a reference execution,
allowing the emergence and correction of simulation-induced
errors to be observed in near real-time.

As the significance of RR (Full Stack) perturbation was
highly variable across participants, this technique could also
be used for automated quality control, flagging high-variance
subjects for further inspection or exclusion from analyses.
Inspecting the regional degradation of signal across these per-
turbations as shown in Fig. 3, researchers could lead a targeted
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Fig. 6. Computation time for each perturbation method. Shown in relative
time to the reference execution, plotted is the average execution time for
the perturbation methods. MCA and RR (Python) have a small increase in
computation time per run, as few floating point operations were instrumented
in these settings. The RR (Full Stack) method has nearly a 7⇥ slowdown. In
this case, all floating point operations were instrumented, but the slowdown of
less than the estimated 100⇥ would suggest that the bulk of computation time
is not spent on floating point arithmetic. The 1-voxel implementations had a
minor slowdown due to the regeneration of data prior to pipeline execution.
In every case, the real-world slowdown is S⇥ larger, where S is the number
of simulations, in this case 100.
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interrogation of their raw datasets to identify underlying causes
of signal loss.

The differences observed when performing 1-voxel pertur-
bations were often comparable in magnitude to the variation
introduced across Operating Systems. As OS noise is not
controlled and may differ greatly among distributions, package
updates, etc., it is likely an insufficiently descriptive evaluation
method, and should be used as a reference alongside others.
The level of control made available through 1-voxel pertur-
bations in terms of both locality and strength of noise makes
it a flexible option that could potentially be used to target
known areas of key importance for subsequent analyses. The
fact that these perturbations represent a near-epsilon change to
input images, this method could also be used for estimating
global pipeline stability in a classical sense (i.e. conditioning).

While each of the perturbation modes showed distinct dif-
ferences with respect to the magnitude and continuity of their
induced deviations, Fig. 4 illustrates that the structure of these
deviations was also highly variable across both perturbation
method and data. This suggests different applications and use
cases for each perturbation method. While MCA and RR
Python implementations impact connectomes globally, these
could be applied to generate synthetic datasets. Full Stack
RR is highly variable with respect to dataset, suggesting
applications in quality control of the derivatives being eval-
uated. Both 1-voxel methods add noise locally, and can test
the sensitivity of specific pipeline components or regions of
interest to variation.

In addition to generating unstable derivatives which could
be looked at or analyzed independently, this type of pertur-
bation analyses enables the aggregation of derivatives. As
is summarized in Fig. 5, the method by which graphs or
edges are aggregated can drastically change the construction
of resulting graphs. While the mean and max (i.e. 100th

percentile) methods both retain all edges that have appeared
in even a single graph, the minimum (0th percentile) and
other low-percentile aggregations require a stricter consensus
of edges for inclusion in the final graph. A benefit of perform-
ing multiple aggregations is the composition of graphs with
complex edge composition, such as the most volatile edges, as
is shown in the final column of Fig. 5. While the binary edge
count in the composite graphs varies in each of these methods,
it is unclear how derived graph statistics will be affected, and
that remains an exciting question for further exploration.

From a resource perspective, each of the perturbation meth-
ods evaluated requires multiple iterations to get a sense of
the pipeline stability or build aggregates, here taken as 100
iterations. Though the MCA-based methods have the obvious
disadvantage of extra computational overhead within each
execution cycle of the pipeline, the noise-injection methods
do not increase the computation time for a single pipeline
execution itself but in this case added computational burden
for the generation of synthetic data dynamically, reducing
the redundancy of stored images on disk. While Verificarlo
has been demonstrated to account for an approximately 100⇥
slowdown in floating point operations [10], the largest slow-

down observed in this pipeline is approximately a factor
of 7, as shown in Fig. 6. This suggests that the bulk of
time on CPU for this pipeline is not spent on floating point
operations, but perhaps other operations such as looping, data
access, or manipulation of information belonging to other data
types. While this slowdown is observed for the the Full Stack
implementation, the Python-only implementation is negligibly
slower than the reference execution, suggesting that even fewer
of the floating point logic is directly written in Python. The
slowdown in the 1-voxel setting is of a similar scale to that
of the Python-only implementation, with the slowdown likely
caused by the addition of 2 read and 1 write operations to
the pipeline’s execution (reading of simulation parameters
and original image, application of simulation, and subsequent
writing of perturbed image to temporary storage). Note that
the figures shown in Fig. 6 are for a single simulation, and
real relative CPU time in each case would be 100⇥ larger for
the experimental application of these methods.

The work presented here demonstrates that even low order
computational models such as a 6-component tensor used in
diffusion modelling are susceptible to noise. This suggests
that stability is a relevant axis upon which tools should be
compared, developed, or improved, alongside more commonly
considered axes such as accuracy/biological feasibility or
performance. The heterogeneity observed across participants
clearly illustrates that stability is a property of not just the data
or tools independently, but their interaction. Characterization
of stability should therefore be evaluated for specific analyses
and performed on a representative set of subjects for consider-
ation in subsequent statistical testing. Additionally, identifying
how this relationship scales to higher-order models is an
exciting next step which will be explored. Finally, the joint
application of perturbation methods with more complex post-
processing bagging or signal normalization techniques may
lead to the development of more numerically stable analyses
while maintaining sensitivity that would be lost in traditional
approaches such as smoothing.

V. CONCLUSION

All pipeline perturbation methods showed unique non-
zero output noise patterns in low-order diffusion modeling,
demonstrating their viability for exploring numerical stability
of pipelines in neuroimaging. MCA and RR (Python) in-
strumented pipelines resulted in a wide range of variability,
sometimes equivalent to subject-level differences, and are rec-
ommended as possible methods to estimate the lower-bound of
stability of analyses, generation of synthetic datasets, and pos-
sible identification of Python-introduced critical branch points.
RR (Full Stack) perturbations resulted in continuously dis-
tributed connectomes that were highly variable across datasets,
ranging from negligible deviations to complete regional signal
degradation. We recommend the use of RR (Full Stack) noise
for automated quality control and identifying global pipeline
stability. While 1-voxel methods result in considerably smaller
maximum deviations than the MCA-based methods, they are
far more flexible and enable evaluating the sensitivity of
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pipelines to minor local data perturbations. While the MCA-
based methods are more computationally expensive than direct
1-voxel noise injections, the slowdown was found to be less
significant in practice than the 100⇥ scaling factor estimated
per floating point operation, presumably due to a significant
portion of the pipeline computation time being spent on data
management or string and integer processing rather than the
constant use of floating point arithmetic.

In all cases, while tool instrumentation enables the par-
allelized simulation of a particular set of instructions, the
aggregation of the simulated graphs is an essential component
of the downstream analyses both when exploring the nature
of instabilities or developing inferences upon the pipeline’s
derivatives. We recommend a percentile approach to aggrega-
tion, where the threshold can be adjusted based on the desired
robustness of the resulting graphs. An advantage of percentile
approaches is also that composite aggregates can be formed,
isolating edges based on their prevalence across simulations.
Further exploration of the distribution of perturbed results
should be performed to conclude on the relevance of the
aggregation used, as the desired aggregate should be close
to the expected value of the distribution.

While both MCA and random-injection simulations are
computationally expensive in that they require the evaluation
of many simulations, they provide an opportunity to character-
ize processing modes that may emerge when analyzing either
noisy datasets or unstable tools. This work also highlighted
an important relationship between the noise properties of an
incoming dataset and the tool, validating the need to jointly
evaluate the stability of tool–dataset combinations.

Where this work demonstrates a range of numerical varia-
tion across minor changes in the quality of data or computa-
tion, it does not address the analytic impact of these deviations
on downstream statistical approaches. This open question, as
well as the relative impact of normalization techniques on this
process, present avenues for research which will more clearly
place these results in a biologically relevant context, allowing
characterization of the functional impact of the observed
instabilities.
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